
Raltron Electronics Oscillators for Satellite Applications May 2025

Raltron Electronics

- Founded in 1983, headquartered in Miami ,Fl .
- Design, manufacturing and distribution of frequency management and IoT related products including:
 - Precision crystal oscillators (VCXO s, TCXOs, OCXO s), crystal and ceramic resonators.
 - Microwave components: VCO's, PLL's, custom modules.
 - Filters(SAW, crystal).
 - LTCC products (filters, baluns, diplexers)
 - Antennas and RF Cable Assemblies
 - Audio Products
- Worldwide operations and distribution.
- Global presence through a network of sales offices, representatives and distributors.

Production Facilities

Miami, Florida – Design, Engineering and Production Precision Oscillators

■TOTAL PERSONNEL: 50

■ENGINEERS: 13

Precision Oscillators Design and Manufacturing

■ISO 9001:2008

■High Mix Low and Medium volume, Customized

manufacturing

PRODUCTION CAPACITY (MONTH)

Programmable Oscillators 100k pcs

OCXO's 10k pcs

TCXO's 100k pcs

Raltron Products for Satellite Applications

Ground Systems

OCXO's TCXO's

Filters

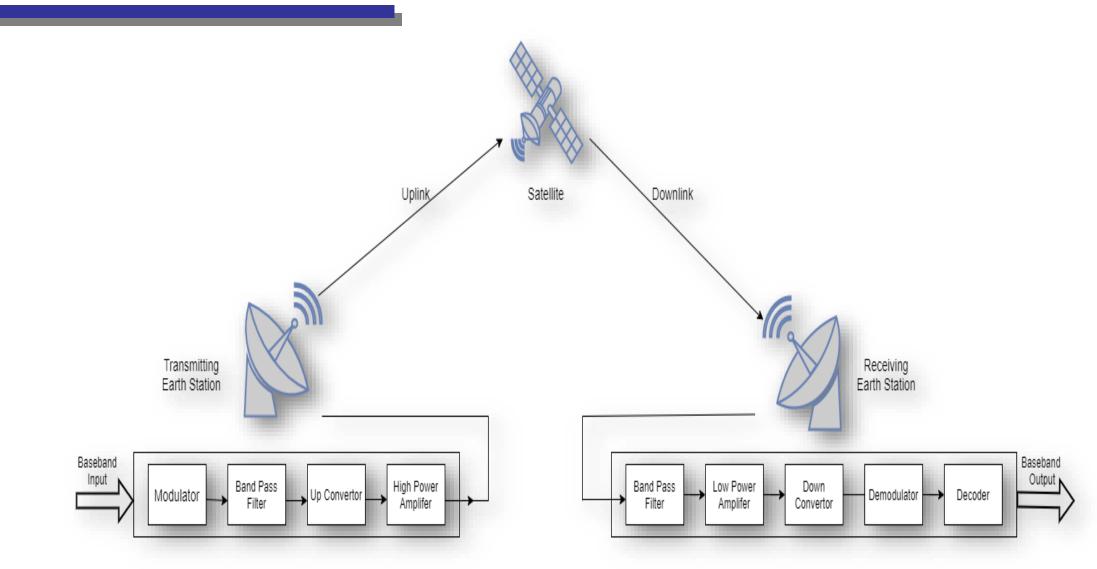
OCXO's
TCXO's

Launch Systems

TCXO's

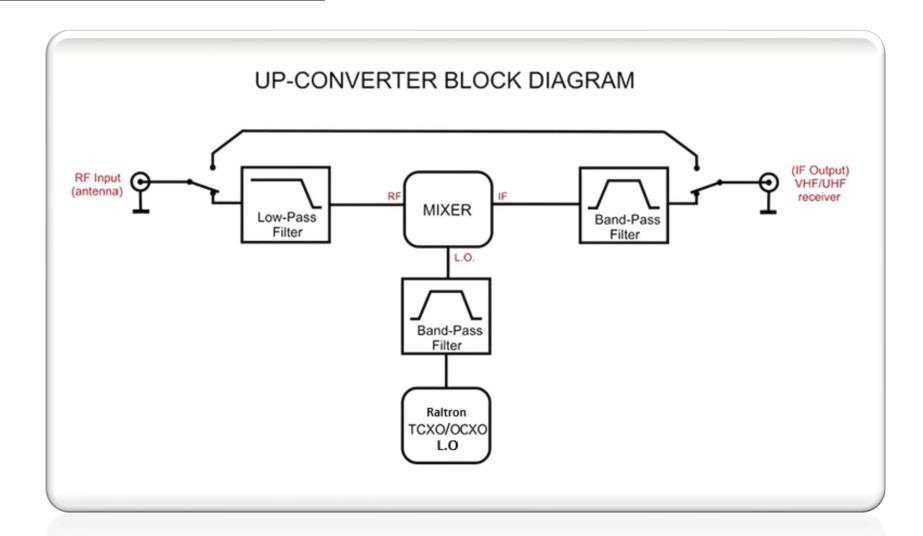
VCXO's

Filters


Ground Based Communications

Systems containing Block Up Converters utilize: OCXO's, TCXO's, Filters

Satellite Communication System


Block Up Converter: BUC

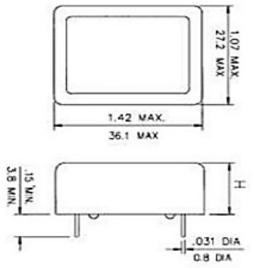
Function: The BUC is a component in the transmission side (up-Link)of a satellite communications system

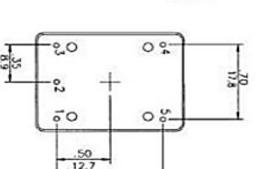
The BUC converts lower frequencies into higher frequencies(information/data) which are transmitted to the satellites via a High-Power Amplifier

Basic BUC Block Diagram

Components used for Block Up Convertor

- Local Oscillators(Low Phase Noise OCXO's)
 - *10 MHz for Lower RF communications
 - *100MHz for Higher RF communications
- Local Oscillator Filters
- Low Pass Filters
- Bandpass Filters


The frequencies vary according to the BUC manufacturer and the specific transmission application.



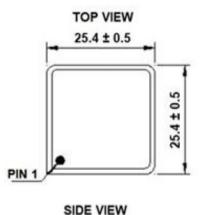
Raltron Low Phase Noise OCXO 10MHz, 12V

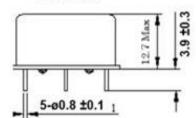
PARAMETER	SYMBOL	CONDITION	VALUE			UNIT
			Min.	Тур.	Max.	
Nominal Frequency	f _o			10.000		MHz
Supply Voltage	Vs	Vs ±5% @ 25°C	11.4	12.0	12.6	V
T	Is	Steady state, @ 25°C			150	mA
Input Current	$I_{S,w}$	During warm-up ,@ 25°C			400	mA
Frequency Stability vs. Temperature	$\Delta f/f_0 \ (T_a)$	Ta= -40°C+85°C, measurement ref to $(f_{max}+f_{min})/2$	-50		+50	ppb
Electronic Frequency Adjust		$V_C = 0.0 \text{Vdc}$ to 9.0Vdc		±1.0		ppm
Output Signal		Sine Wave into 50Ω	8	10	12	dBm
Phase Noise						
@10Hz Offset	£ (∆f)	50Ω Load		-130	-125	dBc/Hz
@100Hz Offset	£ (∆f)	50Ω Load		-150	-145	dBc/Hz
@1kHz Offset	£ (∆f)	50Ω Load		-155	-150	dBc/Hz
@10kHz Offset	£ (∆f)	50Ω Load		-163	-155	dBc/Hz
@100kHz Offset	£ (∆f)	50Ω Load		-165	-160	dBc/Hz
Aging, after 30 days of	$\Delta f/\Delta t_d$	Daily	-0.5		+0.5	ppb
operation	$\Delta f/\Delta t_y$	First year	-100		+100	ppb
G-Sensitivity	G-Sensitivity Ta=25°C, Vs=12V				1	ppb/g
Radiation Hardness Compliant with satellite		Compliant with satellite requirements				

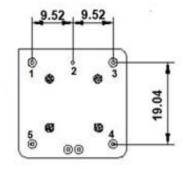
^{*}Lower Phase Noise is available

PIN	SYMBOL	FUNCTION
1	VC	Voltage Control
2	NC	Not Connected
3	Vs	Supply Voltage
4	RF Out	Output
5	GND	Ground

H: 19.0mm max

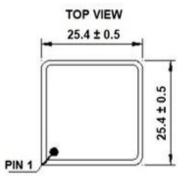

25.4



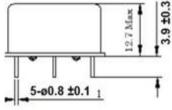

^{**}Lower G-Sensitivity options are available

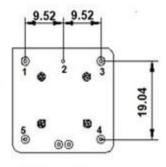
Raltron Low Phase Noise OCXO 100MHz,12V

PARAMETER	SYMBOL	CONDITION		VALUE		UNIT
			Min.	Тур.	Max.	
Nominal Frequency	f_o			100.000		MHz
Supply Voltage	V_{s}	Vs ±5% @ 25°C	11.4	12.0	12.6	V
Insuit Comment	\mathbf{I}_{S}	Steady state, @ 25°C			150	mA
Input Current	$I_{S,w}$	During warm-up, @ 25°C			400	mA
Frequency Stability vs. Temperature	$\Delta f/f_0 (T_a)$	Ta= -40°C+85°C, measurement ref to $(f_{max}+f_{min})/2$	-100		+100	ppb
Electronic Frequency Adjust		$V_C = 0.0 \text{Vdc}$ to 9.0Vdc		±1.0		ppm
Output Signal		Sine Wave into 50Ω	8	10	12	dBm
Phase Noise						
@10Hz Offset	£ (∆f)	50Ω Load		-100	- 95	dBc/Hz
@100Hz Offset	£ (∆f)	50Ω Load		-130	-125	dBc/Hz
@1kHz Offset	£ (∆f)	50Ω Load		-155	-150	dBc/Hz
@10kHz Offset	£ (∆f)	50Ω Load		-165	-160	dBc/Hz
@100kHz Offset	£ (∆f)	50Ω Load		-170	-165	dBc/Hz
Aging, after 30 days of	$\Delta f/\Delta t_d$	Daily	-1		+1	ppb
operation	$\Delta f/\Delta t_y$	First year	-300		+300	ppb
G-Sensitivity		Ta=25°C, Vs=12V			1	ppb/g
Radiation Hardness *Lower G-Sensitivity rates are	wailabla	Compliant with satellite requirements				


PIN	SYMBOL	FUNCTION
1	OUT	Output
2	GND	Ground
3	Vc	Control Voltage
4	NC	Not Connected
5	Vs	Supply Voltage

Raltron Low Phase Noise OCXO 10MHz, 5V


PARAMETER	SYMBOL	CONDITION	VALUE			UNIT
			Min.	Тур.	Max.	
Nominal Frequency	fo			10.000		MHz
Supply Voltage	V_{s}	Vs ±5% @ 25°C	4.75	5.0	5.25	V
Toward Comment	Is	Steady state, @ 25°C			150	mA
Input Current	$I_{S,w}$	During warm-up, @ 25°C			400	mA
Frequency Stability vs. Temperature	$\Delta f/f_0 (T_a)$	Ta= -20°C+70°C, measurement ref to (f _{max} +f _{min})/2	-50		+50	ppb
Electronic Frequency Adjust		$V_C = 0.0 \text{Vdc}$ to 4.5Vdc		±0.5		ppm
Output Signal		Sine Wave into 50Ω	7	9	11	dBm
Phase Noise						
@10Hz Offset £ (Δf) 5		50Ω Load		-125	-120	dBc/Hz
@100Hz Offset	@100Hz Offset £ (Δf) 50Ω Load			-145	-140	dBc/Hz
@1kHz Offset	£ (∆f)	50Ω Load		-160	-155	dBc/Hz
@10kHz Offset	£ (\Delta f)	50Ω Load		-165	-160	dBc/Hz
@100kHz Offset	£ (∆f)	50Ω Load		-170	-165	dBc/Hz
Aging, after 30 days of	$\Delta f/\Delta t_d$	Daily	-0.5		+0.5	ppb
operation	$\Delta f/\Delta t_y$	First year	-100		+100	ppb
G-Sensitivity		Ta=25°C, Vs=12V			1	ppb/g
Radiation Hardness Compliant with s		Compliant with satellite requirements				


^{*}Lower G-Sensitivity rates are available

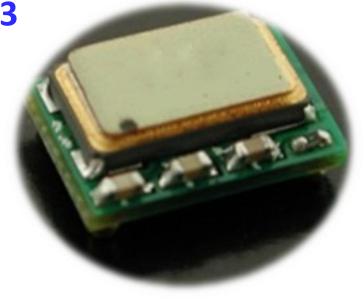
PIN	SYMBOL	FUNCTION
1	OUT	Output
2	GND	Ground
3	Vc	Control Voltage
4	NC	Not Connected
5	Vs	Supply Voltage

BOTTOM VIEW

Raltron Examples of Specs for Satellite OCXOs

PN	Datasheet
OX4180MRHA-D3-2-10.000-5	PDF
OX6180MRHA-D3-2-100.000-5	PDF

Raltron Standard Mechanical Performance

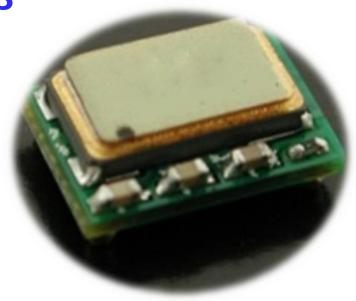

Soldering	All LEO produced products will be built to IPC-J-STD-001HS or Equivalent Levels
Storage Temperature Range	-55°C to +105°C
G-Sensitivity	Standard 1 ppb/g, custom values available
Mechanical Shock	MIL-STD-202, Method 213, Test Condition J (30 g, 11 ms half-sine)
Vibration	MIL STD 202, Method 201, (0.06" Peak to Peak, 10 to 55 Hz)
Humidity	MIL STD 202, Method 103, Test Condition B (95% at 40°C for 96 hours)
Radiation Tolerance	This Product will be built with: a. Active and Passive Components which will meet or exceed AEC criterium b. All Active Components integrated in the design will have been up-screened to 35krad level c. All materials utilized will be traceable to the manufacturer's Lot# and Date Code d. Swept Quartz will be utilized when specified by the customer at additional charge e. Additional Screening or Lot Acceptance Testing can be customized / specified with additional charges

Technology Road Map – Stratum III SMD VCTCXO/TCXO

SIZE (mm)	FREQUENCY (MHz)	VOLTAGE (VDC)	Frequency Stability	OUTPUT WAVEFORM
5.0 x 7.0 x 1.5	10 - 52	2.5 to 5.0	0.20 ppm -40°C to +105°C	Clipped Sine Wave & CMOS
5.0 x 3.2 x 1.5	10 - 52	2.7 to 5.5	0.20 ppm -40°C to +105°C	Clipped Sine Wave & CMOS

- Stratum 3 compliant: ± 0.28 ppm over 40° C to + 105°C ± 4.6 ppm overall including 20 years Aging
- Low Phase Noise Performance: -135 dBc /Hz at 1 kHz and -150 dBc/Hz on the floor
- Low power substitute for AT cut OCXO s

APPLICATION


Telecom Infrastructure, Network Equipment, Wireless Equipment, Test and Measurement Equipment, Picocell, Femtocell, Satellite

Technology Road Map – Stratum III SMD VCTCXO/TCXO

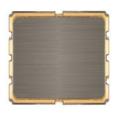
Product Series	Datasheet	Image
TV-35	PDF	
TX-35	PDF	
TV-57 View products in stock	PDF	
TX-57 View products in stock	PDF	

•STRATUM 3

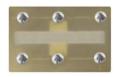
See STRATUM 3 TCXOs Products

APPLICATION

Telecom Infrastructure, Network Equipment, Wireless Equipment, Test and Measurement Equipment, Picocell, Femtocell, Satellite


Technology Road Map – SAW Resonators and Filters

SAW Resonators:


- Frequency range:
 - IF: 32 MHz to 975 MHz
 - RF: 139 MHz to 2675 MHz
- Metal Can and Ceramic SMD
- SAW Filters:
- Frequency range:
 - 100 MHz to 4200 MHz
- Metal Can, Ceramic SMD, CSP
- Standard Products and Customized Designs



See All SAW Filters Products

APPLICATION

Wireless Communications Infrastructure, Wireless Microphones, Instrumentation, Utility Metering, Navigation, Security

Raltron High Performance OCXOs and Stratum 3 TCXOs

- Design and Applications Engineering located in the USA
- OCXO and Stratum 3 TCXO Manufacturing located in Miami, Florida
- State-of-the Art Testing and Data Acquisition Systems used in manufacturing
- Established North American supply chain of critical Raw Materials

Contact

www.raltron.com

Raltron Electronics

10400 N.W. 33rd Street

Miami, FL 33172, U.S.A.

Phone: +1 305 593 6033

Fax: +1 305 594 3973

Sales@raltron.com

