

General Description

Ø 5.0 x 1.50 mm MEMS Speaker

Top View

MEMS Speaker

RSPM-5000.000-5001-GT-NS1

ELECTRICAL SPECIFICATIONS

Parameters	Value	Unit
Resonance Frequency	5000 ±10%	Hz
Q-Factor	1.7	-
Effective membrane surface – S _D	9.1	mm²
Equivalent volume – V _{AS}	8.0	mm³
Internal back volume of the speaker	6.0	mm³

Note: Nominal driving conditions, if not otherwise noted: 1.4 VRMS (2Vp) required.

Electronics

Parameters	Value	Unit
Capacitance (with LCR-Meter at 1V/1kHz)	9.6±2.2	nF
SPL @ 1 kHz / 1mW	106±3	dB
SPL @ 5 kHz / 1mW	101±3	dB

Maximum Operating Conditions

Parameters	Value	Unit
Maximum Voltage Range	-13.5	V
Upper Operating Frequency Limit	80	kHz

RSPM-5000.000-5001-GT-NS1

ACOUSTICS IN COUPLER (IEC 60318-4)

Parameters	Value	Unit
SPL @ 1 kHz / 1.4 VRMS (2 Vp)	91±3	dB
SPL @ 4 kHz / 1.4 VRMS (2 Vp)	102±3	dB
SPL @ 8 kHz / 1.4 VRMS (2 VP)	102±3	dB
SPL @ 1 kHz / 9.5 VRMS (13.5 Vp)	108±3	dB
SPL @ 4 kHz / 9.5 VRMS (13.5 Vp)	118±3	dB
SPL @ 8 kHz / 9.5 VRMS (13.5 Vp)	118±3	dB
THD @ 1 kHz / 1.4 VRMS (2 Vp)	0.8+0.5	%
THD @ 4 kHz / 1.4 VRMS (2 Vp)	0.7+0.5	%
THD @ 8 kHz / 1.4 VRMS (2 Vp)	0.3+0.3	%

DIMENSIONS

Unit : mm Unmarked Tolerance: ± 0.1 (mm)

RSPM-5000.000-5001-GT-NS1

MEASUREMENT SYSTEM SETUP

General	
Measurement system	Audio Precision APx
Measurement signal	Exp. Sweep
Voltage level VAC	1.4 Vrms (2 Vp) // 9.5 Vrms (13.5 Vp)
Applied back volume	Open (infinite)

Coupler (IEC 60318-4)		
Coupler type	IEC 60318-4 ('711')	
Coupler volume	1.26 cm3	
Connection tube length	1.5 mm	
Connection tube diameter	3.0 mm	
Microphone	GRAS 43AC	

Coupler adapter cross-section. The speaker adapter is directly screwed onto the coupler; the ear mold adapter is not used. The outlet for the speaker is round with a diameter of 4 mm and length of 1.5 mm.

RSPM-5000.000-5001-GT-NS1

FREQUENCY CHARACTERISTICS

SPL at 1.4 VRMS (2Vp) drive and 9.5 VRMS (13.5 Vp) drive, measured with the standard 711-Coupler (IEC 60318-4) and the Hi-Res Coupler from GRAS. The latter replicates the frequency response above 10 kHz more accurately

THD at 1.4 VRMS (2Vp) drive, measured with the standard 711-Coupler (IEC 60318-4) and with the Hi-Res Coupler from GRAS. The latter replicates the THD above 3 kHz more accurately.

RSPM-5000.000-5001-GT-NS1

CONNECTIVITY

The speaker is driven by applying a voltage between the (+) and the (-) contacts. The bigger pad corresponds to the negative input, the smaller pad to the positive (Figure).

A positive voltage on the positive pad will result in the membrane moving up (away from the pads).

Electrical contacts of the MEMS speaker.

TYPICAL APPLICATION CIRCUIT

RSPM-5000.000-5001-GT-NS1

RECOMMENDED PCB LAYOUT

The analog outputs of a typical Audio (Bluetooth) SoC processor are connected to the inputs of UC-P3010 through two capacitors. The amplifier is self-configured at power on (EN=1). The I2C interface to the SoC is optional in case the user intends to re-write the stored default configuration.

The input capacitors C6 and C7 as well as the output capacitors C4 and C5 linearity (minimalchange of capacitance over voltage) is important for minimal contribution to the THD, typically achieved with higher voltage rating ceramic capacitors.

LAYOUT GUIDELINE:

A low-impedance compact PCB layout design is required in the DC-DC part. This includes the pins VSW, VSS, VBST, the inductor L1 and the Schottky diode D1. Design a short and wide connection for VSW (L1-D1) and VBAT, especially in the connectivity of the boost diode (D1), boost Inductor (L1), boost capacitor (C1) and VBAT bypass capacitor (C2). Components C3 and R3 require a very short and wide connection as well to function appropriately. The unused pins B2 and B3 should be grounded. The unused pins C3 and B4 should be floating.

RSPM-5000.000-5001-GT-NS1

RECOMMENDED PCB LAYOUT

Parameter		Reference	Specification
Average R	amp Rate	T_L to T_P	3°C/sec max
	Minimum Temperature	T _{SMIN}	110°C
Proheat	Maximum Temperature	T _{SMAX}	145°C
Preneal	Time T _{SMIN} to T _{SMAX}	ts	60 sec
Ramp-Up	Rate	T _{SMAX} to T _L	3°C/sec
Liquidous	Temperature	TL	157°C
Peak Tem	perature	T _P	200°C
Ramp-Dov	vn Rate	T _P to T _{SMAX}	6°C/sec max
Time +25°	C (t25°C) to Peak Temperature		240 sec

RSPM-5000.000-5001-GT-NS1

SPECIAL CAUTIONS

GENERAL

It needs to be considered that MEMS devices consist of silicon structures, and therefore, they should be handled with care. Any bending of the MEMS speakers must be avoided while handling during the assembly process, otherwise the speaker can be damaged.

HANDLING

Careful handling of these speakers is recommended to avoid damage. Use tweezers or a similar tool, applying light contact to the speaker's side wall.

HAND SOLDERING

Improper soldering of MEMS speakers at high temperatures can potentially damage the component. Apply soldering iron only on the electrical pads on the bottom side of the speaker during the soldering process. It is recommended to follow the standard IPC J-STD-001 "Requirements for Soldered Electrical and Electronic Assemblies." For inspection, it is suggested to follow IPC-A-610G.

Туре	Recommended Parameters	Comments
Soldering Temperature 340°C	340°C	-
Soldering Time	1-2 s	Maximum 5s

APPROVAL

DRAWN BY	AR, July 4, 2025
APPROVED BY	CP, July 4, 2025
REVISION	A, Initial Release

Raltron Electronics / RAMI Technology USA, LLC, including its affiliates, employees, agents and other persons acting on its behalf (collectively Raltron/RAMI Tech), disclaim any and all liability for any errors or inaccuracies contained in this data sheet. While Raltron/RAMI Tech has made every reasonable effort ensure the accuracy of all product information, specifications and data contained herein, Raltron/RAMI Tech does not guarantee that the information is accurate, reliable or current. The product information is provided only for reference purposes only and is subject to change, correction or revision, at any time without notice. Raltron/RAMI Tech does not assume any liability arising out of an application or use of any product described herein and disclaims any warranties expressed or implied. The user of products in such applications shall assume all risks of such use and will agree to hold Raltron/RAMI Tech, harmless against all damages. Copyright © 2016, Raltron Electronics / RAMI Technology USA, LLC. All rights reserved. No part of this document may be reproduced in any form without the prior written permission of Raltron Electronics / RAMI Technology USA, LLC.